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2 PCA

A short description of the technique is: simplifying a data set by reducing
multidimensional data sets to lower dimensions for analysis. It can be used
for exploratory data analysis and to make predictive models.

In this description of the PCA we will be looking at an example data set
for some explanations, the Cheese data set. In the data set 12 assessors have

1



tested 14 samples 2 times, giving a score between 1-9 on 17 variables. This
leaves us with a data matrix of (12*14*2)=336 objects, X with n=336 and
p=17 (336 x 17). Each sample represents a cheese sample that was stored
under certain conditions. The variables are various flavours and odours of a
cheese.

The first principal component will stretch out in the direction where there
is most variance, of variable space, and form the first PC axis. The next PC
is orthogonal to this axis, and has the direction where there is second most
spread of variance orthogonally to the first axis, for the next where there is
third most spread, and so on. With our data set we have a 17-dimensional
variable space, so to visualize how the first PCs form we must simulate a 2d
or 3d variable space of the data set.

2.1 Preprocessing

The preprocessing part can make the difference between a useful model and
no model at all. One term for preprocessing is called autoscaling, which is
the combination of mean centering and standardization. Standardization is
one type of scaling where each value is scaled by 1/STD. In our data set we
know that all the scores lies between 1 and 9, so scaling will not be necessary.
In other cases attributes/variables can have scores where there is natural to
have other values than just 1-9 (i.e. any other type: age, length, volume,
time, newton, etc.), in these cases we probably need to do a standardization.
We mean center each attribute vector X; by this formula:

2.2 PC Model

The method involves decomposing a data matrix X into a structure part and
a noise part. The PC model is the matrix product TP (the Structure):

X = TP" + E = Structure + Noise (2)

In figure 1 (on next page) we can see how scores and loadings form the
TP (Structure) part of the equation. This summation will get us back to X,
but what we are interested in is each of the scores and loadings which are
collected in TPT. We assume that X can be split into the sum of the matrix
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Figure 1: Collection of scores and loadings

product TPT and the residual matrix E. And wish to use T and P instead
of X.

About the number of PCs, there is a maximum, and that is the least of n
or p (min(n,p)) of the data matrix. We have 336 objects and 17 variables in
our cheese data set (n=336, p=17), so that means there can be a maximum
of 17 PCs. If we use all 17 we will have a full model, but then we have only
replaced the variable space with a new coordinate system, the PC-space.
And there has been no separation, so E will be equal to 0. The separation of
the structure part and the noise part is one the strengths of a PCA. That is
why we are typically most interested in the first few PCs (usually PC; and
PCy), where there should be most explained variance, and if not min(n,p)=2
should yield separation of structure and noise.

We want the structure part to have a high percentage of explained vari-
ance and the noise to be collected in E. For this to happen, as best as possible,
we need to find an optimum number of PCs. This can be a non-trivial task.
Because we don’t want to be removing information about our data set, but
still there is great advantage in the separation of the structure and the noise.
To search for the optimum number of PCs, we use the E-matrix.

2.3 Scores: T

The Scores, structure part of the PCA. Summary of the original variables
in X that describe how the different rows in X (observations) relate to each
other. In the T-matrix column 1 (¢;) is the scores of the first PC. The second
column contains the scores of the second PC, and so on. The term scores
can be ambiguous, what we mean are the elements in the T-matrix. Without



any further specification.

The scores give us one of the most powerful tools that Principal-Component-
based methods can offer us. The Score plot. It is simply scores plotted
against each other. The most usual score plot has scores of PC1 plotted
against the scores of PC2. It could also be called a map of samples.

2.4 Loadings: P

The Loadings, structure part of the PCA. The weights (influence) of the
variables in X on the scores T. Of the loadings we can see which variables
that are responsible for patterns found in scores, T, using the Loadings plot.
This plot is simply the loadings of a PC plotted against the loadings of
another PC. We can see how the scores and loadings relate, and that is
very important about this plot. The loadings plot could be called a map of
variables.

2.5 Residuals: E

The Residuals (E-matrix), is the noise part of the PCA, a n x p large Matrix.
E is not part of the model. It will be the part of X which is not explained by
the model TPT. That is why it should generally not be "large”, that would
mean we have removed much information. Which, furthermore, will give us
a poor PC model. Hopefully, it should be no more than noise of some sort
(i.e. differences, on a score on same sample and variable, between assessors).

The evaluation of E is always relative to the average object of X (in
variable space), which is the origo in the PC-space. This average object can
also be thought of as the first approximation to X, or the Oth PC (PCy).

As we calculate more PCs, the residual variance will change. We start
off with a Ey with a residual variance of 100% and an explained variance
of 0% (in the model). Actually, at this stage we don’t have the TPT term,
yet. TPT equals to 0. The other way around, when we have a full model,
E equals to 0 and we have 100% explained variance (but also with all the
noise). Throughout the calculation of PCs:

ExplainedV ariance + ResidualV ariance = 100% (3)

This is what we use to find the optimum number of PCs. We can plot the
change in residual variance, as the number of PCs increase. And, by human
interpretation, select the best number.
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The size of E is expressed in terms of squared variance. This is by proper
statistical fashion, because E is an error term. So, there will be summation
of squares of the elements in the E-matrix. This can be done either along
the rows of the E-matrix, which will give us object residuals, or down along
columns, which will give us variable residuals. Let us take a look at object
residuals. For each row we will get a sum €? for object i. We will be looking
at the total residual variance, for all the objects simultaneously. Though we
could have been looking at the residual variance for each object or variable,
but this we would only do in special cases (i.e. with outliers. Note: The
PCA module must be modified to return such results). We get a measure of
the distance between the objects in variable space and the representation of
the objects in PC-space by this formula:

et?ot - Z 612 (4>
=1

The smaller these distances are, the closer the PC model representation
of the objects is to the original objects. This sum will be decreasing as the
number of PCs increase (e7,, > €2, )

3 Correlation Loadings

Correlation Loadings can be calculated after the PCA is run. It is the corre-
lations between the values of a column in X (variable space) and the scores
of a PC (correlations of X; and t;).

4 NIPALS algorithm

The NIPALS (”Nonlinear Iterative Partial Least Squares”) algorithm is one
of the many methods that exist for finding the eigenvectors (another exam-
ple is SVD). It was originally made for PCA, but it has been used in other
methods as well.

This is an overview of the algorithm:

X is a mean centered data matrix
Ey = X The E-matrix for the zero-th PC (PCj) is mean centered X
t vector is set to a column in X



t will be the scores for PC;
p will be the loadings for PC;
threshold = 0.00001 Just a low value, to do the convergence check

Iterations (i=1 to number-of-PCs):

1. Project X onto t to find the corresponding loading p
p = (EG_yt)/ (")

2. Normalise loading vector p to length 1
p=px*(p'p)"°

3. Project X onto p to find corresponding score vector t
t = (E-up)/(p"p)

4. Check for convergence. If difference between eigenvalues T, = (t7t)
and 7,4 (from last iteration) is larger than threshold T, return to
step 1.

5. Remove the estimated PC component from E;_)
E() = Eq-1) — (tp")
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